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LETTER TO THE EDITOR 

Quantum fluid dynamics description of a multiterm potential 
nonlinear Schrodinger-Langevin equation 

AntGnio B Nassar 
Department of Physics, University of California, Los Angeles, Los Angeles, CA 90024, USA 

Received 8 March 1985 

Abstract. Via quantum fluid dynamics we present a general method to obtain a solution 
of the nonlinear Schrodinger-Langevin equation with a multiterm potential for the descrip- 
tion of interactions in non-conservative systems. The nonlinear complete set of equations 
forming the basis of our model are derived. The corresponding solutions are exhibited in 
terms of auxiliary ordinary differential equations which provide relations between the 
potential coefficients and other coefficients prescribing the fluid-particle behaviour. 

In recent years quantum mecharical treatment of dissipative processes has been a 
subject of much interest due to its applicability to solid state physics, statistical physics, 
photochemistry, fission and heavy ion physics (Dekker 1981, Messer 1979, Hasse 1978 
and references therein, Nassar 1984). At the same time, the study of anharmonic 
oscillator-like interactions in conservative systems has evoked much attention because 
of its varied application in field theory and molecular physics (Datta and Rampal 
1981, Sharma and Sharma 1984). In particular, exact solutions of the Schrodinger 
equation with various multiterm potentials, for the description of interactions in 
conservative systems, have been found (Leach 1984, 1985, Flessas and Watt 1981, 
Flessas 1981). 

In this paper, we complete an investigation started in an earlier work (Nassar 1984), 
generalising the method presented there in order to obtain a solution of the nonlinear 
Schrodinger-Langevin equation ( NLSLE), for the description of interactions in non- 
conservative systems (Kostin 1972, Nassar 1985), with a multiterm potential. To this 
end, we begin with the NLSLE, which has found use in many applications (Weiner and 
Forman 1974, Griffin and Kan 1976) 

where +(x, t )  is the wavefunction, (hv/2i)  In(+/+*) accounts for the dissipation and 
the external potential is given by 

V(x, t ) / m  = { U (  t ) x 2 + f b (  t)x3+:c( t )x4+4d( t )x5+ae(  t)x6-f(t)x. (2) 

To obtain a fluid dynamical description of the wavefunction +(x, t ) ,  we express 

(3) 

this function in the Madelung polar form 

+(x, t )  = 4(x,  t )  exp(iS(x, 1)). 
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After substitution of (3) into (1) we obtain from its real and  imaginary parts 

a u l a ? +  v au/ax + VU = - ( l /m) (a / ax ) (  V +  VqJ 

aplat  + (a/ax)(pu) = 0 

(4) 

and 

( 5 )  

where p = & *  is the quantum fluid density,v = (h /m)  aS/ax  is the fluid submicroscopic 
velocity, and V,, = -(h2/2m)( 1 / J p )  a2Jp/aX2 is the Bohm quantum potential. An 
essential feature of the quantum potential is that the force arising from it is not like 
an  ordinary mechanical force. Rather, it acts more like a self-active information content. 
So it follows that the expectation value of the Bohm quantum force vanishes for all 
times, i.e., (aVq,/ax)= 0. ( F ) = j  Fp d x  is the expectation value of F taken over an  
ensemble of equivalent particles. 

This suggests that (4) can be split into (Nassar 1984) 

a v/a  t + v aulax + vu + ax  + bx2 + cx3 + dx4 + ex5 - f = W( x - X, t ) ( 6 )  

and 

= W ( x - x ,  t )  ( 7 )  

provided that ( W( x - X ,  t ) )  = 0. 

write (7) as 
Supposing the ansatz p(x, t )  = ( N (  exp[-a(x -X) ’ - fp (x  - X)4] we may 

a(. -!- 6) = A ( t ) ( x - X ) +  B( t ) (x  - X ) 3 +  C( t)(x -X)5 ,  
ax 2m2 JP ax2 (8) 

where A ( t ) = ( h 2 / m 2 ) ( a 2 - 3 p ) ,  B ( r ) = ( 4 h 2 / m 2 ) a p  and  C ( t )  =(3h2 /m2)p2 .  For sim- 
plicity, let p = a*. Then 

W ( x - x ,  t )  = - p ( t ) ( x - X ) + q ( t ) ( x - X ) 3 + ~ ( f ) ( X - X ) 5 ,  (9) 
where 

p (  t )  = 2h2a2/m2,  q(  t )  = 4h2a3/m2 and  r (  t )  = 3h2a4/m2.  
(9a, 9b, 9c) 

Now, by requiring the condition of normalisation j:: p d x  = 1 we have 
+oc 5, e x p [ - a ( x - X ) 2 - f a 2 ( x - X ) 4 ]  d x =  (N( t ) ) ’ ”  ( loa) 

or 

exp[-$a2z2- ~ z ] z - ” ~  d z  = (N(t))’’2 

with z = (x - X)2 .  

r= 
Since (Gradshteyn and  Ryzhik 1965) 

J exp(-bz2-az)zm-’ d z =  (2b)-”’/’r(m) exp(a2/8b)D_, (a / J2b)  
0 
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we find 

N (  t )  = r k 2 [ (  t ) ,  (12 )  

where k E e1’4D-,,2( 1 )  and [( t )  = l / a (  t ) .  Notice that 6 has dimensions of [x]’. So 

Substituting ( 1 3 )  into ( 5 )  and integrating we get 

u(x, t )  = ( 5 / 2 5 ) ( x  - X )  + x, (14 )  

where the constant of integration must be zero since p vanishes for / x / + a .  

left with 

( i / 2 5 -  4 ’ / 4 t 2 +  v5 /25+  a + p  - 3 q X ’ -  5 r X 4 ) ( x  - X )  +?(e  - r )  + x 4 ( d  + 5 r X )  

Next, by replacing (14 )  and ( 9 )  into ( 6 )  and after some easy manipulations we are 

+ x 3 ( c - q -  ~ O ~ X ~ ) + X ’ ( ~ + ~ ~ X - I O ~ X ~ )  

+ ( X  + v X  + a x  - 2 q x 3  - 4 r x 5  - f )  = 0. ( 1 5 )  

This equation is identically satisfied if 

i / 2 t - . & 2 / 4 5 2 +  v5 /25+  a +2A2/m25’-  12A2X’/m253- 1 5 A 2 X 4 / m 2 [ 4 = 0  ( 1 6 0 )  

( 1 6 b )  

(16c )  

c - q -  10rX2 = 0 ( 1 6 d )  

d + 5 r X = O  (16e )  

e - r = 0 ,  ( 1 6 f )  

where we have used (9a ,  9b, 9 c )  in ( 1 6 ~ ) .  
To summarise, we have presented a solution to a NLSLE (describing interactions 

in non-conservative systems) with a multiterm potential in terms of auxiliary differential 
equations. We believe that the method carried out above poses some perspectives and  
an alternative stepping stone for applications and  further work both from the analytical 
and numerical point of view. 

X + v X  + a x  - 2 q x 3  - 4rx5 = f 
b + 3qX - 10rX3 = 0 

I would like to thank Professor P G L Leach (University of Witwatersrand) for sending 
me his new reprints and preprints. I am indebted to Professor S J Putterman (UCLA) 
for many fruitful discussions, R Berg for her critical reading of the manuscript and  
F L Machado for constant encouragement. 
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